Research Report: 3D Spatial Data Processing Technology 
and Its Applications  AI Research Institute 
2025_01Youngho Hong
Abstracts:
This research covers the development and application of 3D spatial 
data processing technologies, especially point cloud data acquisition 
and 3D object detection technologies utilizing LiDAR sensors. 
Focusing on 3D object detection technologies VoxelNet, PointNet, 
and PointRCNN, we describe how these technologies are being 
utilized in various fields such as autonomous vehicles, healthcare, 
industrial automation, safety surveillance systems, and VR/AR. Point 
cloud data collected by LiDAR sensors analyzes 3D space with high 
precision, and 3D object detection technology based on it plays an 
important role in real-time environment recognition, precision 
diagnosis, manufacturing process optimization, etc. This study 
analyzes the impact of 3D spatial data processing technology on 
modern industry and technological innovation, and discusses the 
potential for future development.
Keywords:
3D Spatial Data, LiDAR Sensors, Point Cloud, 3D Object Detection, 
VoxelNet, PointNet, PointRCNN, Autonomous Vehicles, 
Healthcare, Industrial Automation, Safety Surveillance Systems, 
VR/AR, Deep Learning2 --
1. Introduction
It involves the process of data collection, storage, analysis, and 
visualization, and uses technologies such as LiDAR, photogrammetry, 
and 3D scanning to process three-dimensional spatial information. 
These technologies are used in a variety of software platforms, with 
geographic information systems (GIS) and computer-aided design 
(CAD) the primary tools. This for complex spatial analysis.
LiDAR uses laser pulses to collect distance data, while 
photogrammetry uses aerial photographs to create 3D models. These 
data are stored in a database and used for analysis and visualization 
when needed.1)
Research has shown that 3D CNN structures can be used to learn 3D 
representations, which can be done more efficiently than traditional 
fully 3D CNN-based methods.2)
GPU-based 3D visualization methods allow for more sophisticated and 
accurate spatial demarcation.3)
3D modeling is used as an essential tool in the architectural design 
and simulation process. It allows you to evaluate the safety of 
structures and increase the accuracy of your designs.
3D spatial data is utilized in studies of ecosystem change and disaster 
management. For example, 3D geological modeling is used for 
groundwater exploration and geological research.4)
3D data being utilized to develop immersive environments to 
enhance the user experience. This is applied in a variety of 
industries, including education, healthcare, and entertainment.
3D spatial data processing technologies are rapidly advancing in 
various fields, especially point cloud data acquisition and object 
detection in 3D space using LiDAR sensors. These technologies 
revolutionizing autonomous vehicles, medical , industrial 3 --
automation, safety surveillance systems, and VR/AR environments. 
This research report provides a basic understanding of 3D spatial 
data processing technologies and explains how they are being 
applied in various industries.
1) Bai, X., Zhou, J., Ning, X., & Wang, C. (2022). 3D data computation and 
visualization. Displays, 73, 102169.
2) Kim, E. Y., Shin, S. Y., Lee, S., Lee, K., Lee, K. H., & Lee, K. M. (2020). 
Triplanar convolution with shared 2D kernels for 3D classification and 
shape retrieval. Computer Vision and Image Understanding, 193, 102901.
3) Xue, Z., Wu, S., Li, M., & Cheng, K. (2024). A Novel Method for Regional 
Prospecting Based on Modern 3D Graphics. Minerals.
4) Dzikunoo, E., Vignoli, G., Jørgensen, F., Yidana, S., & Banoeng-Yakubo, B. 
(2020). New regional stratigraphic insights from a 3D geologic model of the 
Nasia sub-basin, Ghana, developed for hydrogeologic purposes and based 
on reprocessed B-field data originally collected for mineral exploration. 
Solid Earth, 11, 349-361.4 --
2. Collecting Point CLoud data with LiDAR sensors
Point cloud data collection using LiDAR sensors plays an important 
role in a wide range of applications, and is particularly well suited for 
high-resolution 3D data collection. LiDAR technology emits laser 
pulses to receive signals reflected from objects and calculates 
distance information based on them. This information is stored in a 
point cloud format, where each point contains X, Y, Z coordinates 
and reflection intensity.
LiDAR point clouds can be in a variety of fields, including urban , 
environmental , and resource management. For example, they can be 
useful for structural analysis of forests or precise surveying of 
buildings. Point clouds are then converted into 3D or GIS data by 
post-processing for denoising, alignment, and surface reconstruction. 
Various software is used in this process, especially GPU-based 3D 
visualization methods, which allow for more sophisticated spatial 
demarcation.5)
LiDAR data also plays an important role in perception systems for 
autonomous vehicles. LiDAR point cloud processing and training in 
the field of autonomous driving has contributed to accurate 
perception of the road environment and object detection.6) These 
data are essential for constructing high-resolution, real-time 3D 
maps, which autonomous vehicles to navigate safely in complex road 
conditions.
LiDAR point can also be in For example, data collected by aircraftmounted
LiDAR can be used to reconstruct 3D models of geological 
formations, which contribute to groundwater exploration or 
geological research.7) This 3D geological modeling enables new 
geological interpretations and helps to better understand the 
geological characteristics of an area.
The advantages of LiDAR technology include high-speed data 
acquisition and high accuracy, but it has limitations as relatively 
high cost and performance in rainy or Ongoing research and 5 --
development is being done to overcome these technical limitations, 
which is allowing LiDAR technology to be used in a variety of 
industries.
A LiDAR (Light Detection and Ranging) sensor is a technology that 
uses lasers to measure the surface of an object and use the data to 
obtain 3D spatial information. The point cloud data generated by a 
LiDAR sensor is a collection of many points distributed in 3D space, 
each of which can be characterized by elevation, distance, and 
positioning.
5) Bai, X., Zhou, J., Ning, X., & Wang, C. (2022). 3D data computation and 
visualization. Displays, 73, 102169.
6) Abbasi, R., Bashir, A., Alyamani, H. J., Amin, F., Doh, J., & Chen, J. (2023). 
Lidar Point Cloud Compression, Processing and Learning for Autonomous 
Driving. IEEE Transactions on Intelligent Transportation Systems, 24, 962-
979.
7) Dzikunoo, E., Vignoli, G., Jørgensen, F., Yidana, S., & Banoeng-Yakubo, B. 
(2020). New regional stratigraphic insights from a 3D geologic model of the 
Nasia sub-basin, Ghana, developed for hydrogeologic purposes and based 
on reprocessed B-field data originally collected for mineral exploration. 
Solid Earth, 11, 349-361.6 --
beams. This data is crucial for autonomous vehicles' perception of 
their surroundings, modeling architecture and civil engineering, 
and 3D mapping.
3. 3D object detection technology
3D object detection is an important technology for recognizing and 
localizing objects in 3D space, and essential in a variety of fields, 
including autonomous vehicles, , and augmented reality. It is 
primarily based on 3D data collected through LiDAR, RGB-D cameras, 
and stereo vision systems.
It utilizes point clouds generated by LiDAR to recognize the location 
and shape of objects. Deep learning models such as PointNet are 
widely used in this field, and these methods are essential for 
generating high-resolution, real-time 3D maps.8)
It is a technique for detecting objects by combining 2D images 
obtained with RGB cameras with 3D information. This method 
improves detection performance by adding color and pattern 
information of the object. Recent studies have proposed methods 
such as FusionRCNN, which combines LiDAR and camera images to 
increase the accuracy of detection.9)
Deep structures such as convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs) are used to and recognize features 
of 3D These models improve the accuracy of object classification and 
location estimation based on datasets, which especially important 
for obstacle recognition in autonomous vehicles.10)
It is used to increase driving safety by detecting obstacles and 
pedestrians on the road. There active research in this area to fuse 
LiDAR point clouds with vision data for more precise detection.11)
It helps the robot understand and interact with its environment. This 
especially important for determining the exact location of objects to 
help the robot plan its path and perform tasks.7 --
Recognize and react to objects in real time to enhance the user 
experience. For example, in augmented reality, the location and 
shape of objects must accurately determined to enhance interaction 
with virtual objects.
8) Qian, R., Lai, X., & Li, X. (2021). 3D Object Detection for Autonomous Driving: 
A Survey. Pattern Recognition, 130, 108796.
9) Xu, X., Dong, S., Xu, T., Ding, L., Wang, J., Jiang, P., Song, L., & Li, J. (2023).
FusionRCNN: LiDAR-Camera Fusion for Two-Stage 3D Object Detection. 
Remote Sensing, 15, 1839.
10) Fan, L., Yang, Y., Wang, F., Wang, N., & Zhang, Z. (2023). Super sparse 3D 
object detection. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 45, 12490-12505.
11) Xu, X., Dong, S., Xu, T., Ding, L., Wang, J., Jiang, P., Song, L., & Li, J. (2023).
FusionRCNN: LiDAR-Camera Fusion for Two-Stage 3D Object Detection. 
Remote Sensing, 15, 1839.8 --
These technologies constantly evolving, providing more precise and 
efficient 3D object detection solutions. Advances in research and 
technology are significantly improving the accuracy of recognition in 
real-world environments.
3D object detection is a technique for accurately identifying and 
classifying specific objects in 3D space, which is supported by 
various 3D spatial data processing techniques. Recently, deep 
learning-based techniques have actively applied to 3D object 
detection. Representative technologies VoxelNet, PointNet, and 
PointRCNN.
3.1 VoxeLNet
VoxelNet is an innovative deep learning architecture specifically 
designed to detect 3D objects using point clouds, which is critical in 
autonomous driving systems. The architecture takes a unique 
approach by converting raw point cloud data into a structured 3D 
voxel grid to enable efficient processing and feature extraction. The 
conversion to a voxel representation is because it allows VoxelNet to 
effectively utilize 3D convolution to capture spatial information 
while ensuring computational efficiency. This efficiency is essential 
for real-time applications such as those required for autonomous 
driving.
The strength of VoxelNet lies in its ability to incorporate a new 
feature encoding layer that greatly enhances the representational 
power of each voxel. This is achieved by taking into account the 
unique characteristics of the points contained in each voxel, which 
improves the network's ability to detect and classify objects within 
complex environments.12) This feature encoding step is for solving 
problems caused by the irregular and sparse nature of point cloud 
data, which is difficult to handle using traditional 2D convolutional 
neural networks.
Research has shown that VoxelNet has made significant 9 --
contributions to the field of 3D object detection. For exampleits 
architecture's ability to provide high accuracy while maintaining 
computational efficiency makes it a preferred choice for crossexample
applications in autonomous vehicles.13) In addition, 
VoxelNet's sparse representation integration enables it to effectively 
handle the large amounts of data common in autonomous driving 
scenarios.
The development of VoxelNet represents a significant advance in 3D 
data processing and lays the foundation for future innovations in 
autonomous driving technology. It addresses key challenges in the 
field by combining efficient voxelization with advanced feature 
encoding techniques.14) This not only improves detection accuracy, 
but also enables more sophisticated enforcement
12) Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., & Bennamoun. (2019). Deep 
Learning for 3D Point Clouds: A Survey. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 43, 4338-4364.
13) Wang, X., Cai, M., Sohel, F., Sang, N., & Chang, Z. (2021). Adversarial 
point cloud perturbations against 3D object detection in autonomous 
driving systems. Neurocomputing, 466, 27-36.
14) Chen, W., Li, P., & Zhao, H. (2022). MSL3D: 3D object detection from 
monocular, stereo and point cloud for autonomous driving. 
Neurocomputing, 494, 23-32.10 --
VoxelNet is pushing the boundaries of 3D perception system 
development. With its powerful performance and innovative 
approach, VoxelNet continues influence ongoing research and 
development in the fields of 3D point cloud processing and 
autonomous systems.15)
VoxelNet is an innovative model for 3D object detection that 
processes point cloud data by converting it into 3D grids (voxels). 
Each voxel represents a point in the point cloud, which allows the 
model process spatial information more effectively. VoxelNet uses 
this voxel information detect objects and make predictions. This 
approach the advantage of being able to process large amounts of 
point cloud data efficiently and quickly.
3.2 PointNet
PointNet is a groundbreaking deep learning architecture that 
revolutionizes 3D point cloud data processing by directly consuming 
unordered point sets. Unlike traditional methods that require 
structured inputs, PointNet uses symmetry functions to ensure 
permutation invariance, the spatial relationships between points so 
that the remains regardless of the of the input points.
The key innovation of PointNet is the use of perceptrons (MLPsand 
max-pooling This architecture efficiently aggregates features from 
individual points into a global representation, which is particularly 
useful for tasks such as classification and segmentation. Thanks to its 
ability to and accurately large point , a foundational model in the 
field, inspiring numerous subsequent architectures based on its 
principles.
PointNet's impact extends beyond academic research to practical 
implementations in areas such as autonomous driving and robot 
recognition. For example, in autonomous systems, PointNet has been 
used to process LiDAR data to improve object detection and 
navigation by identifying and classifying objects from one trial to the 
next.16) PointNet's design allows it to effectively handle the 11 --
complexities associated with 3D data, such as occlusions and 
variations in point density, making it a versatile tool in computer 
vision applications.
The advances brought about by PointNet have led to its adaptation in 
a variety of innovative contexts. For example, it has been applied to 
classify airborne LiDAR data, improving the accuracy and efficiency 
of remote sensing operations.17) PointNet's adaptability has also been 
used to integrate with physics-based neural networks to analyze 
crack propagation.
15) Yang, Y., Chen, F., Wu, F., Zeng, D., Ji, Y., & Jing, X. (2020). Multi-view 
semantic learning network for point cloud based 3D object detection. 
Neurocomputing, 397, 477-485.
16) Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., & Bennamoun. (2019). Deep 
Learning for 3D Point Clouds: A Survey. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 43, 4338-4364.
17) Nong, X., Bai, W., & Liu, G. (2023). Airborne LiDAR point cloud 
classification using PointNet++ network with full neighborhood features. 
PLOS ONE, 18.12 --
and fluid dynamics simulations solve complex industrial problems.18)
Pointnet continues to serve as a benchmark in 3D data processing, 
significantly advancing the ability of deep learning models to process 
point cloud data. Its impact is evident in both theoretical advances 
and practical applications, demonstrating its continued relevance 
and adaptability in the evolving landscape of artificial intelligence 
and machine learning.19)
PointNet is a model that can directly process point cloud data, 
recognizing objects in 3D space regardless of the order of each point. 
PointNet extracts the features of the points and performs 
classification and segmentation based on them. This model can 
handle the unstructured nature of point clouds and can be used in 
various fields such as autonomous driving, robotics, and medical 
image analysis.
3.3 PointRCNN
PointRCNN is an important framework in the field of 3D object 
detection, especially for applications such as autonomous driving. 
The framework uses a two-step detection process to improve the 
accuracy and efficiency of detecting objects in 3D point cloud data. 
The first step is to generate object suggestions through a point-based 
localization suggestion network. This step is because it works directly 
on the raw point cloud data, preserving detailed spatial information 
that can be lost in traditional methods that rely on image projections 
or voxelization.
In the second step, PointRCNN refines the initial proposal by 
performing 3D bounding box This adjusts the size and orientation of 
the to better fit the detected objects within the point cloud data. By 
utilizing features extracted directly from the raw point cloud, 
PointRCNN achieves higher accuracy in detection especially in 
challenging environments with complex geometry and occlusions.
One of the main advantages of PointRCNN is its ability to learn end-13 --
to-end. This architecture facilitates the seamless integration of 
network stages, improving not only the detection performance of the 
model but also its computational efficiency, making it suitable for 
real-time applications, such as those required by autonomous driving 
systems.
Research has shown that methods using point cloud data can 
significantly improve the understanding and interpretation of 3D 
scenes in autonomous driving situations. For example, the use of a 
multi-target detection algorithm based on PointRCNN and voxel 
point cloud fusion techniques can be used in dynamic scenarios due 
to their versatility and
18) Kashefi, A., & Mukerji, T. (2022). Physics-informed PointNet: A deep 
learning solver for steady-state incompressible flows and thermal fields on 
multiple sets of irregular geometries. Journal of Computational Physics, 468, 
111510.
19) Wang, L., & Huang, Y. (2022). A Survey of 3D Point Cloud and Deep 
Learning-Based Approaches for Scene Understanding in Autonomous 
Driving. IEEE Intelligent Transportation Systems Magazine, 14, 135-154.14 --
In addition, surveys in the field of 3D point clouds and deep learning 
approaches the growing importance of these frameworks for scene 
understanding in autonomous driving.20)
Overall, PointRCNN represents a significant advance in 3D object 
detection technology. Its ability to directly process raw point data 
and efficient two-stage detection process makes it a powerful tool for 
the autonomous driving , where fast and accurate object is critical for 
safety and performance.
PointRCNN is a technology that utilizes a CNN (Convolutional Neural 
Network) based on PointNet for 3D object detection, effectively 
processing point cloud data to accurately detect objects. PointRCNN 
is a technology that extends the existing 2D object detection method 
to 3D environments and is applied to object recognition of 
autonomous vehicles and environment recognition of robots.
4. Applications
PointRCNNs play an essential role in autonomous driving systems 
and are used to accurately recognize and track objects in the 
surrounding environment. Object using 3D point can help vehicles 
road obstacles with a high degree of accuracy, even in complex 
traffic situations.22)
The robot utilizes 3D object detection technology to interact with the 
environment. PointRCNN enables the robot to understand its 
surroundings from run to run and perform the necessary tasks.24)
In AR environments, accurate object detection in 3D space is 
required to seamlessly insert virtual objects into the real world. 
PointRCNN plays an important role in this task.
Drones need the ability to recognize and avoid various obstacles 
during flight. PointRCNN can be utilized to detect objects in real-time 
from the drone's sensor data and set a safe flight path.25)15 --
20) Luo, X., Zhou, F., Tao, C., Yang, A., Zhang, P., & Chen, Y. (2022). Dynamic 
Multitarget Detection Algorithm of Voxel Point Cloud Fusion Based on 
PointRCNN. IEEE Transactions on Intelligent Transportation Systems, 23, 
20707-20720.
21) Wang, L., & Huang, Y. (2022). A Survey of 3D Point Cloud and Deep 
Learning-Based Approaches for Scene Understanding in Autonomous 
Driving. IEEE Intelligent Transportation Systems Magazine, 14, 135-154.
22) Qian, R., Lai, X., & Li, X. (2021). 3D Object Detection for Autonomous 
Driving: A Survey. Pattern Recognition, 130, 108796.
23) Mao, J., Shi, S., Wang, X., & Li, H. (2022). 3D Object Detection for 
Autonomous Driving: A Comprehensive Survey. International Journal of 
Computer Vision, 131, 1909-1963.
24) Wang, L., & Huang, Y. (2022). A Survey of 3D Point Cloud and Deep 
Learning-Based Approaches for Scene Understanding in Autonomous 
Driving. IEEE Intelligent Transportation Systems Magazine, 14, 135-154.
25) Arnold, E., Al-Jarrah, O. Y., Dianati, M., Fallah, S., Oxtoby, D., & Mouzakitis, 
A. (2019).16 --
PointRCNN is applied to 3D modeling and analysis of urban 
environments, providing important insights for urban planning and 
management. This help improve transportation efficiency and 
enhance safety in cities.
In these applications, PointRCNNs are very useful in situations where 
high accuracy and real-time processing are required. Research shows 
that techniques such as multi-target detection algorithms based on 
PointRCNNs demonstrating their performance and efficiency in 
these applications.26) PointRCNNs contribute to maximizing the 
accuracy and efficiency of 3D object detection, which important for 
the advancement of autonomous vehicles and other advanced 
systems.
3D spatial data processing technology used in many different 
industries. Some of the main applications include
4.1 Autonomous vehicles
vehicles are vehicles that use advanced technology to drive 
themselves without human intervention. These vehicles utilize a 
variety of sensors, cameras, radar, LiDAR, and more to accurately 
recognize their surroundings. These technologies, combined with 
real-time data processing, are essential for determining safe driving 
routes.
In particular, 3D object detection technology is a key component of 
autonomous vehicles, playing an important role in accurately 
detecting and recognizing objects around the vehicle. PointRCNN, 
for example, leverages point cloud data to enable high-resolution 
analysis of a vehicle's surroundings. This autonomous vehicles to 
recognize pedestrians, other vehicles, road signs, and more in real 
time to ensure safe driving.27)
Autonomous vehicles also the ability to apply machine learning and 
artificial intelligence technologies to learn driving patterns and adapt 17 --
to different driving situations. These technologies contributing to 
improving vehicle safety, efficiency, and user experience. In 
particular, multi-sensor fusion technology improves the accuracy of 
3D object detection, reliable performance in a variety of 
environments.28)
A Survey on 3D Object Detection Methods for Autonomous Driving 
Applications. IEEE Transactions on Intelligent Transportation Systems, 20, 
3782-3795.
26) Luo, X., Zhou, F., Tao, C., Yang, A., Zhang, P., & Chen, Y. (2022). Dynamic 
Multitarget Detection Algorithm of Voxel Point Cloud Fusion Based on 
PointRCNN. IEEE Transactions on Intelligent Transportation Systems, 23, 
20707-20720.
27) Luo, X., Zhou, F., Tao, C., Yang, A., Zhang, P., & Chen, Y. (2022). Dynamic 
Multitarget Detection Algorithm of Voxel Point Cloud Fusion Based on 
PointRCNN. IEEE Transactions on Intelligent Transportation Systems, 23, 
20707-20720.
28) Wang, X., Li, K., & Chehri, A. (2024). Multi-Sensor Fusion Technology for 
3D Object Detection in Autonomous Driving: A Review. IEEE Transactions 
on Intelligent Transportation Systems, 25, 1148-1165.18 --
Autonomous vehicles a key area of innovation in the future 
transportation system through the convergence of complex 
algorithms and sensor technologies. These technologies have the 
potential to positively impact society as a whole by reducing 
congestion, decreasing traffic accidents, and enabling more efficient 
traffic flow.29)
Autonomous vehicles use LiDAR sensors and 3D object detection 
technology to recognize and analyze the vehicle's surroundings in 
real time. This allows them to avoid obstacles, recognize pedestrians, 
analyze intersections, and more to maximize safety and driving 
efficiency.
4.2 Healthcare
3D object detection techniques in the medical field, especially those 
such as PointRCNN, a wide range of possible applications. They are 
mainly utilized in medical imaging, surgical robots, patient 
monitoring systems, and more.
3D object detection technology helps accurately detect lesions in CT, 
MRI, and ultrasound images. This is especially important in fields 
such as radiology, where it can be combined with computer-aided 
diagnostic systems that utilize artificial intelligence and machine 
learning to improve the accuracy of diagnosis.30)
In surgical robotic systems, 3D object detection technology enables 
accurate recognition of surrounding tissues and organs during 
surgery, helping to ensure safe and precise surgery. This, coupled 
with advances in medical artificial intelligence, can greatly improve 
the efficiency and safety of surgery.31)
3D sensors and object detection technology can analyze a patient's 
real-time movements and vital signs to detect abnormalities at an 
early stage. These technologies be combined with artificial 
intelligence-based patient monitoring systems to continuously track 
and manage a patient's condition.32)19 --
Combined with virtual reality (VR), it can be utilized in medical 
education and training. 3D object detection technology
29) Arnold, E., Al-Jarrah, O. Y., Dianati, M., Fallah, S., Oxtoby, D., & 
Mouzakitis, A. (2019). A Survey on 3D Object Detection Methods for 
Autonomous Driving Applications. IEEE Transactions on Intelligent 
Transportation Systems, 20, 3782-3795.
30) Hadjiiski, L. M., Cha, K. H., Chan, H., Drukker, K., Morra, L., Näppi, J., 
Sahiner, B., Yoshida, H., Chen, Q., Deserno, T., Greenspan, H., Huisman, H., 
Huo, Z., Mazurchuk, R., Petrick, N., Regge, D., Samala, R. K., Summers, R., 
Suzuki, K., ... & Armato, S. (2022). AAPM task group report 273: 
Recommendations on best practices for AI and machine learning for 
computer-aided diagnosis in medical imaging. Medical physics.
31) Mukherjee, J., Sharma, R., Dutta, P., & Bhunia, B. (2023). Artificial 
intelligence in healthcare: a mastery. Biotechnology and Genetic 
Engineering Reviews, None, 1-50.
32) Almagharbeh, W. (2024). The impact of AI-based decision support 
systems on nursing workflows in critical care units. International nursing 
review, None.
[8] Wang, L., Chen, X., Zhang, L., Li, L., Huang, Y., Sun, Y., & Yuan, X. (2023). 
Artificial intelligence in clinical decision support systems for oncology. 
International Journal of Medical Sciences, 20, 79-86.20 --
 plays an important role in helping doctors and medical professionals 
simulate surgeries and diagnoses, enabling learning in a realistic 
environment.33)
These applications contribute to increasing the accuracy of diagnosis 
and treatment in the medical field and improving overall safety. In 
particular, 3D object detection technology combined with AI is 
accelerating innovation in healthcare and is becoming an important 
tool for improving patient health and safety. These studies provide 
new perspectives on the commercial, regulatory, and societal 
implications of medical AI.34)
In the medical field, 3D spatial data processing utilized for precise 
diagnosis and surgical planning. Point cloud data from 3D medical 
imaging, such as CT scans or MRI results, is used to visualize the 
surgical site and measure its exact location and size to improve 
surgical accuracy.
4.3 Industrial automation and robotics
3D object detection technologies, especially models like PointRCNN, 
are revolutionizing the field of industrial automation and robotics. 
These technologies significantly improve efficiency and accuracy 
across a wide range of industries, and play an important role in the 
following specific areas
3D object detection technology is essential for robotic systems to 
recognize and sort objects within a warehouse. It enables robots to 
accurately recognize objects of different sizes and shapes, allowing 
them to perform efficient movement and sorting tasks. These 
technologies increase the efficiency of industrial processes and 
facilitate the automation of logistics systems.35)
When industrial robots automatically assemble parts, 3D object 
detection increases assembly efficiency by recognizing the exact 
location and orientation of parts. This contributes significantly to 
increasing production rates and reducing defect rates, and an 21 --
important role in smart manufacturing environments.36)
Utilizing 3D scanning technology to inspect the geometry and 
dimensions of products, they play an important role in ensuring 
product quality, detecting defects early, and reducing costs. These 
automated parts
33) Yeh, M. C., Wang, Y., Yang, H., Bai, K., Wang, H., & Li, Y. (2020). 
Artificial Intelligence- Based Prediction of Lung Cancer Risk Using 
Nonimaging Electronic Medical Records: Deep Learning Approach. Journal 
of Medical Internet Research, 23.
34) Mukherjee, J., Sharma, R., Dutta, P., & Bhunia, B. (2023). Artificial 
intelligence in healthcare: a mastery. Biotechnology and Genetic 
Engineering Reviews, None, 1-50.
35) Höfer, S., Bekris, K. E., Handa, A., Gamboa, J. C., Mozifian, M., Golemo, F., 
Atkeson, C.,
Fox, D., Goldberg, K., Leonard, J., Liu, C., Peters, J., Song, S., Welinder, P., & 
White, M. (2021). Sim2Real in Robotics and Automation: Applications and 
Challenges. IEEE Transactions on Automation Science and Engineering, 18, 
398-400.
36) Ji, S., Lee, S., Yoo, S., Suh, I., Kwon, I., Park, F., Lee, S., & Kim, H. (2021).
Learning-Based Automation of Robotic Assembly for Smart Manufacturing. 
Proceedings of the IEEE, 109, 423-440.22 --
Quality inspection systems increase product reliability.37)
To increase the safety of robots and automation systems, 3D object 
detection technology is utilized. This enables to recognize nearby or 
safely. These safety mechanisms contribute to reducing accidents in 
industrial settings.38)
It is essential for autonomous vehicles or drones to detect objects and 
plan their routes. 3D object detection technology these systems to 
operate efficiently, avoid obstacles, and perform delivery tasks 
safely.39)
In these areas, 3D object detection technologies driving innovation 
in industrial automation, helping to realize productivity gains, cost 
savings, and increased safety. In the future, these technologies will 
continue to be an integral part of the evolution of robotics and 
automation systems. Research shows that the application of these 
technologies is making a significant contribution to increasing the 
efficiency of industrial processes and managing the complexity of 
automated systems.40)
In industrial automation and robotics, 3D spatial data processing is 
used to increase the efficiency of manufacturing processes and 
automate quality inspections. Robots use LiDAR sensors or 3D 
cameras recognize products, detect anomalies, and help resolve 
quality issues.
4.4 Safety surveillance systems
In safety surveillance systems, 3D object detection technology an 
important role in providing effective monitoring and security 
solutions in a variety of environments. This technology has been 
particularly prominent in areas such as real-time monitoring, 
intrusion detection, incident prevention, data analysis and reporting, 
and artificial intelligence integration.
With real-time monitoring capabilities, 3D object detection systems 23 --
utilize cameras and sensors to analyze the surrounding environment 
in real time. This real-time analysis enables accurate recognition of 
people, vehicles, and objects, and provides immediate warnings in 
the event of a dangerous situation. This is essential for increasing 
safety, especially in complex environments like roads and airports.
When it comes to intrusion detection, 3D object detection technology 
is effective in detecting unusual movement or behavior within a 
specific security zone. This can lead to early detection of an 
intruder's approach and provide security personnel with immediate
37) Wang, K., Zhou, J., Li, G., Hu, Y., & Hu, F. (2024). Industrial automation 
and product quality: the role of robotic production transformation. Applied 
Economics.
38) Salcic, Z., Atmojo, U., Park, H., Chen, A., & Wang, K. (2019). Designing 
Dynamic and Collaborative Automation and Robotics Software Systems. 
IEEE Transactions on Industrial Informatics, 15, 540-549.
39) Nebot, E. (2018). Robotics: From Automation to Intelligent Systems. 
Engineering.
40) Mulaveesala, R., Arora, V., Dua, G., Morello, R., & Vavilov, V. (2022). 
Industrial vision and automation. Measurement Science and Technology, 33.24 --
Prevent unauthorized entry into secure areas by providing red flags.
In terms of accident prevention, these systems help prevent 
accidents in a variety of environments, including industrial sites, by 
detecting hazards early and providing warnings. For example, an 
automated warning system can be triggered when a worker 
approaches a hazardous area to prevent an accident.
Data analysis and reporting capabilities help you assess the security 
situation and identify issues through subsequent analysis using the 
collected 3D data. These analytics provide important insights for 
future security strategy and continuous security improvement.
With artificial intelligence integration, 3D object detection 
technology can be combined with machine learning algorithms to 
create a more intelligent surveillance system. This the system to 
learn patterns and implement more sophisticated alerting and 
response mechanisms.
In this way, 3D object detection technology is becoming an integral 
part of safety surveillance systems, fulfilling a variety of security 
needs and contributing to the safety of facilities. These technologies 
are expected to evolve further in the future, leading to more 
sophisticated and efficient safety surveillance solutions. These 
technological advancements will evolve into more robust security 
systems, especially through integration with artificial intelligence.41)
3D object detection technology also an important role in safety 
surveillance systems. LiDAR sensors and 3D object detection 
technology be used to detect intruders or determine if people are 
nearby. They also analyze patterns of behavior in 3D space to track 
and prevent illegal activity.25 --
41) Chen, Y., Wang, H., Pang, Y., Han, J., Mou, E., & Cao, E. (2023). An 
Infrared Small Target Detection Method Based on a Weighted Human Visual 
Comparison Mechanism for Safety Monitoring. Remote. Sens., 15, 2922.26 --
4.5 VR/AR
In virtual reality (VR) and augmented reality (AR), 3D object 
detection technology is greatly enhancing the user experience in a 
variety of industries. 3D object detection enables users to interact 
with real-world objects within virtual environments, which is 
essential for AR applications to recognize their surroundings in real 
time to accurately place and manipulate virtual elements. This makes 
the user experience more immersive.
In VR environments, 3D object detection is utilized to create realistic 
simulations. This provides training scenarios in a variety of fields, 
including medical, , and aviation, allowing participants to safely 
experience and practice real-life situations. The application of VR/AR, 
especially in the field of construction safety, increases worker safety 
awareness.42)
In the gaming industry, 3D object detection provides an experience 
by accurately tracking the player's movement and position. This 
enables interaction with virtual characters, increasing the realism of 
the game.
In architecture and engineering, AR technology can be used to 
visualize design models in real-world environments. This help detect 
errors in the design process in advance and facilitate communication 
with clients. These applications can be particularly synergistic with 
construction safety.43)
AR technology helps consumers make purchasing decisions by 
allowing them to virtually experience products. For example, it gives 
them the ability to place furniture in their home or try on cosmetic 
colors in advance. This enhances the consumer's buying experience 
and interaction.44)
In this way, 3D object detection technology is delivering 
revolutionary experiences in VR and AR, and is being utilized in a 
variety of industries. In the future, these technologies will continue 27 --
to evolve, making the interaction between the user and the virtual 
environment even more seamless and natural. This will further 
expand the use of VR/AR technology in education, entertainment, 
commerce, and more. At the same time, advances in these 
technologies will create new opportunities in the tourism and 
hospitality industries.45)
42) Li, X., Yi, W., Chi, H., Wang, X., & Chan, A. P. C. (2018). A critical review 
of virtual and augmented reality (VR/AR) applications in construction safety. 
Automation in Construction, 86, 150-162.
43) Li, X., Yi, W., Chi, H., Wang, X., & Chan, A. P. C. (2018). A critical review 
of virtual and augmented reality (VR/AR) applications in construction safety. 
Automation in Construction, 86, 150-162.
44) Jayawardena, N. S., Thaichon, P., Quach, S., Razzaq, A., & Behl, A. (2023). 
'The persuasion effects of virtual reality (VR) and augmented reality (AR) 
video advertisements: A conceptual review'. Journal of Business Research.
45) Wei, W. (2019). Research progress on virtual reality (VR) and augmented 
reality (AR) in tourism and hospitality. Journal of Hospitality and Tourism 
Technology, 10, 539-570.28 --
In virtual reality (VR) and augmented reality (AR), 3D spatial data 
plays an important role interacting with real-world objects. 3D 
spatial data enables virtual objects to be properly placed in the real 
world and helps users interact with them in a natural way.
5. Conclusion
3D spatial data processing technology revolutionizing many fields, 
including autonomous driving, healthcare, industry, safety, and 
VR/AR. In particular, LiDAR sensors and 3D object detection 
technologies playing an important role in each of these fields, 
contributing to real-time environmental analysis, accurate diagnosis 
and treatment, and efficient automation systems. These technologies 
will continue to evolve and provide richer user experiences in 
various fields.29 --
References
1. Abbasi, R., Bashir, A., Alyamani, H. J., Amin, F., Doh, J., & Chen, J. 
(2023). Lidar Point Cloud Compression, Processing and Learning for 
Autonomous Driving. IEEE Transactions on Intelligent 
Transportation Systems, 24, 962-979.
2. Arnold, E., Al-Jarrah, O. Y., Dianati, M., Fallah, S., Oxtoby, D., & 
Mouzakitis, A. (2019). A Survey on 3D Object Detection Methods for 
Autonomous Driving Applications. IEEE Transactions on Intelligent 
Transportation Systems, 20, 3782-3795.
3. Bai, X., Zhou, J., Ning, X., & Wang, C. (2022). 3D data computation 
and visualization. Displays, 73, 102169.
4. Beam, A. L., Drazen, J. M., Kohane, I. S., Leong, T., Manrai, A., & 
Rubin, E. J. (2023). Artificial Intelligence in Medicine. New England 
Journal of Medicine, 388(13), 1220-1221.
5. Campilho, R., & Silva, F. J. G. (2023). Industrial Process 
Improvement by Automation and Robotics. Machines.
6. Cao, M., & Wang, J. (2020). Obstacle Detection for Autonomous 
Driving Vehicles With Multi-LiDAR Sensor Fusion. Journal of 
Dynamic Systems Measurement and Control - Transactions of the 
ASME, 142.
7. Chen, W., Li, P., & Zhao, H. (2022). MSL3D: 3D object detection 
from monocular, stereo and point cloud for autonomous driving. 
Neurocomputing, 494, 23-32.
8. Chen, Y., Wang, H., Pang, Y., Han, J., Mou, E., & Cao, E. (2023). An 
Infrared Small Target Detection Method Based on a Weighted Human 
Visual Comparison Mechanism for Safety Monitoring. Remote. Sens., 
15, 2922.
9. Dzikunoo, E., Vignoli, G., Jørgensen, F., Yidana, S., & BanoengYakubo,
B. (2020). New regional stratigraphic insights from a 3D 
geologic model of the Nasia sub-basin, Ghana, developed for 
hydrogeologic purposes and based on reprocessed B-field data 
originally collected for mineral exploration. Solid Earth, 11, 349-361.
10. Enríquez, J. G., Ramirez, A. J., Domínguez-Mayo, F. J., & GarcíaGarcía,
J. A. (2020). Robotic Process Automation: A Scientific and 
Industrial Systematic Mapping Study. IEEE Access, 8, 39113-39129.
11. Fan, L., Yang, Y., Wang, F., Wang, N., & Zhang, Z. (2023). Super 30 --
sparse 3D object detection. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 45, 12490-12505.
12. Fernandes, D., Silva, A., Névoa, R., Simões, C., Gonzalez, D. G., 
Guevara, M., Novais, P., Monteiro, J., Melo-Pinto, P., & Melo-Pinto, P. 
(2021). Point-cloud based 3D object detection and classification 
methods for self-driving applications: A survey and taxonomy. 
Information Fusion, 68, 161-191.
13. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., & Bennamoun. (2019). 
Deep31 --
Learning for 3D Point Clouds: A Survey. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 43, 4338-4364.
14. Hadjiiski, L. M., Cha, K. H., Chan, H., Drukker, K., Morra, L., 
Näppi, J., Sahiner, B., Yoshida, H., Chen, Q., Deserno, T., Greenspan, 
H., Huisman, H., Huo, Z., Mazurchuk, R., Petrick, N., Regge, D., 
Samala, R. K., Summers, R., Suzuki, K.,
... & Armato, S. (2022). AAPM task group report 273: 
Recommendations on best practices for AI and machine learning for 
computer-aided diagnosis in medical imaging. Medical physics.
15. Huang, S. (2019). Augmented reality and virtual reality: the power 
of AR and VR for business. Information Technology and Tourism, 21, 
457-459.
16. Ji, S., Lee, S., Yoo, S., Suh, I., Kwon, I., Park, F., Lee, S., & Kim, H. 
(2021).
Learning-Based Automation of Robotic Assembly for Smart 
Manufacturing. Proceedings of the IEEE, 109, 423-440.
17. Jayawardena, N. S., Thaichon, P., Quach, S., Razzaq, A., & Behl, A. 
(2023). 'The persuasion effects of virtual reality (VR) and augmented 
reality (AR) video advertisements: A conceptual review'. Journal of 
Business Research.
18. Kim, E. Y., Shin, S. Y., Lee, S., Lee, K., Lee, K. H., & Lee, K. M. 
(2020).
Triplanar convolution with shared 2D kernels for 3D classification 
and shape retrieval. Computer Vision and Image Understanding, 193, 
102901.
19. Kim, J., Kim, M., Park, M., & Yoo, J. (2022). Immersive interactive 
technologies and virtual shopping experiences: Differences in 
consumer perceptions between augmented reality (AR) and virtual 
reality (VR). Telematics and Informatics, 77, 101936.
20. Kusiak, A. (2023). Hyper-automation in manufacturing industry. J. 
Intell. Manuf., 35, 1-2.
21. Li, X., Yi, W., Chi, H., Wang, X., & Chan, A. P. C. (2018). A critical 
review of virtual and augmented reality (VR/AR) applications in 
construction safety. Automation in Construction, 86, 150-162.
22. Luo, X., Zhou, F., Tao, C., Yang, A., Zhang, P., & Chen, Y. (2022). 
Dynamic Multitarget Detection Algorithm of Voxel Point Cloud 
Fusion Based on PointRCNN. IEEE Transactions on Intelligent 32 --
Transportation Systems, 23, 20707-20720.
23.Mao, J., Shi, S., Wang, X., & Li, H. (2022). 3D Object Detection for 
Autonomous Driving: A Comprehensive Survey. International 
Journal of Computer Vision, 131, 1909-1963.
24.Mulaveesala, R., Arora, V., Dua, G., Morello, R., & Vavilov, V. 
(2022). Industrial vision and automation. Measurement Science and 
Technology, 33.
25. Mukherjee, J., Sharma, R., Dutta, P., & Bhunia, B. (2023). Artificial 
intelligence in healthcare: a mastery. Biotechnology and Genetic 
Engineering Reviews, None, 1-50.
26.Nebot, E. (2018). Robotics: From Automation to Intelligent Systems. 
Engineering.
27. Ren, S., Pan, X., Zhao, W., Nie, B., & Han, B. 
(2022). Dynamic graph33 --
transformer for 3D object detection. Knowledge-Based Systems, 259, 
110085.
28. Song, S., Huang, T., Zhu, Q., & Hu, H. (2023). ODSPC: deep 
learning-based 3D object detection using semantic point cloud. 
Visual Computer, , 1-15.
29.Wei, W. (2019). Research progress on virtual reality (VR) and 
augmented reality (AR) in tourism and hospitality. Journal of 
Hospitality and Tourism Technology, 10, 539-570.
30. Xue, Z., Wu, S., Li, M., & Cheng, K. (2024). A Novel Method for 
Regional Prospecting Based on Modern 3D Graphics. Minerals.
31. Yeh, M. C., Wang, Y., Yang, H., Bai, K., Wang, H., & Li, Y. (2020). 
Artificial Intelligence-Based Prediction of Lung Cancer Risk Using 
Nonimaging Electronic Medical Records: Deep Learning Approach. 
Journal of Medical Internet Research, 23.
32. Zhou, Q. (2022). Computer-aided detection and 
diagnosis/radiomics/machine learning/deep learning in medical 
imaging. Medical Physics.

+ Recent posts